4x^2+17x/3x^2+10x+3=4/3

Simple and best practice solution for 4x^2+17x/3x^2+10x+3=4/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x^2+17x/3x^2+10x+3=4/3 equation:



4x^2+17x/3x^2+10x+3=4/3
We move all terms to the left:
4x^2+17x/3x^2+10x+3-(4/3)=0
Domain of the equation: 3x^2!=0
x^2!=0/3
x^2!=√0
x!=0
x∈R
We add all the numbers together, and all the variables
4x^2+17x/3x^2+10x+3-(+4/3)=0
We add all the numbers together, and all the variables
4x^2+10x+17x/3x^2+3-(+4/3)=0
We get rid of parentheses
4x^2+10x+17x/3x^2+3-4/3=0
We calculate fractions
4x^2+10x+3=0
a = 4; b = 10; c = +3;
Δ = b2-4ac
Δ = 102-4·4·3
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{13}}{2*4}=\frac{-10-2\sqrt{13}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{13}}{2*4}=\frac{-10+2\sqrt{13}}{8} $

See similar equations:

| 6m=20-(4m-10) | | +(2x5)=14 | | 999999999999999*999999999999999*5=x | | 2t+7+5t-4-t+2=1 | | 2t+7+5t-4-t+2=0 | | x÷15=90 | | 2=8/j | | t/8=8 | | -3(k-2)=-3 | | 40t^2-t+4000=0 | | 1.4x+5.2=0 | | 3(g-2)=25 | | b=4=15 | | 2/5e-2=5 | | -4(y+2)=-7y-17 | | y=-3/8=7 | | 4f-7=13 | | Z^2/6-5^z/2-36=0 | | 10(v+18)=260 | | 6-75x+33=50x+5 | | 24+6j=36 | | 2550000/x=3.5 | | 13+4q=-2q+12+9 | | 9/x+3=1-x/x-3 | | 5(x-2)+11(x-6)=7x-14 | | (x+14)+(4x-9)=180 | | -2p+5=8-p | | -3(5+2y)+2y=1 | | 6a-3=4a-21 | | 7m+2m=3m-10 | | 4w=7w-18 | | 5m=3m-10 |

Equations solver categories